The Matrix Ansatz, Orthogonal Polynomials, and Permutations
نویسندگان
چکیده
In this paper we outline a Matrix Ansatz approach to some problems of combinatorial enumeration. The idea is that many interesting quantities can be expressed in terms of products of matrices, where the matrices obey certain relations. We illustrate this approach with applications to moments of orthogonal polynomials, permutations, signed permutations, and tableaux. To Dennis Stanton with admiration.
منابع مشابه
Matrix Ansatz, lattice paths and rook placements
We give two combinatorial interpretations of the Matrix Ansatz of the PASEP in terms of lattice paths and rook placements. This gives two (mostly) combinatorial proofs of a new enumeration formula for the partition function of the PASEP. Besides other interpretations, this formula gives the generating function for permutations of a given size with respect to the number of ascents and occurrence...
متن کاملVector Spaces of Linearizations for Matrix Polynomials: A Bivariate Polynomial Approach
Abstract. We revisit the important paper [D. S. Mackey, N. Mackey, C. Mehl, and V. Mehrmann, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 971–1004] and, by viewing matrices as coefficients for bivariate polynomials, we provide concise proofs for key properties of linearizations for matrix polynomials. We also show that every pencil in the double ansatz space is intrinsically connected to a Bézout...
متن کامل2 7 N ov 2 00 8 Matrix Ansatz , lattice paths and rook placements
We give two combinatorial interpretations of the Matrix Ansatz of the PASEP in terms of lattice paths and rook placements. This gives two (mostly) combinatorial proofs of a new enumeration formula for the partition function of the PASEP. Besides other interpretations, this formula gives the generating function for permutations of a given size with respect to the number of ascents and occurrence...
متن کاملA fractional type of the Chebyshev polynomials for approximation of solution of linear fractional differential equations
In this paper we introduce a type of fractional-order polynomials based on the classical Chebyshev polynomials of the second kind (FCSs). Also we construct the operational matrix of fractional derivative of order $ gamma $ in the Caputo for FCSs and show that this matrix with the Tau method are utilized to reduce the solution of some fractional-order differential equations.
متن کاملMultiple Orthogonal Polynomials and a Counterexample to Gaudin Bethe Ansatz Conjecture
Jacobi polynomials are polynomials whose zeros form the unique solution of the Bethe Ansatz equation associated with two sl2 irreducible modules. We study sequences of r polynomials whose zeros form the unique solution of the Bethe Ansatz equation associated with two highest weight slr+1 irreducible modules, with the restriction that the highest weight of one of the modules is a multiple of the...
متن کامل